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Abstract We present a critical discussion related to the recent
definition of the intrinsic reactivity index, IRI, (Tetrahedron
Lett. 2013, 54, 339-342; Tetrahedron 2013, 69, 4247-4258)
formulated to describe both, electrophilicity (charge accep-
tance) and nucleophilicity (charge donation) reactivities. We
here stress that such an IRI model, based on the quantity μ/η,
should be properly related to theoretical approximations asso-
ciated to the change in the global electronic energy of a given
chemical system under interaction with a suitable electron
bath (Gazquez JL et al. J Phys Chem A 2007, 111, 1966-
1970). Further, the limitations of the IRI model are presented
by emphasizing that the intrinsic relative scales of electrophi-
licity and nucleophilicity within a second-order perturbation
approach must account for the further stabilization of the two
interacting species (Chamorro E et al. J Phys Chem A 2013,
117, 2636-2643).
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Introduction

Recently, Kiyooka and co-workers [1, 2] have identified the
relation between the chemical potential μ and the molecular

hardness η [3–6] as the basis for the definition of an intrinsic
reactivity index (IRI). They claimed that IRI, defined as IRI≡
2ε, where, ε≡μ/η, provides a single scale to classified both,
electrophilic and nucleophilic reactivity of chemical species.
Using the simplest approach for the evaluation of chemical
potential and hardness in terms of molecular orbitals, namely
μ≈(EHOMO−ELUMO)/2 and η≈(ELUMO−EHOMO), the authors
found a parabola fitting between Parr’s electrophilicity index
ω≡μ2/2η [7–10], and the proposed ε when several molecular
systems were examined. These systems ranking from strong
nucleophiles to strong electrophiles become categorized ac-
cording to the sign of the ε parameter, that is, positive ε values
for the former and negative ε values for the later. In the present
work we focus on these interesting results in order to stress
some points that deserve, as will be noted, further conceptual
consideration and discussion.

Results and discussion

Starting with the second order Taylor expansion of the energy
as a function of the electron transfer at fixed external potential,
v(r), i.e., ΔE ¼ μΔN þ 1

2 ηΔN2, we first notice that the
quantity ε is not dimensionless, as it was erroneously stated
[1, 2]. This follows directly from the definition of the global
indices μ≡[∂E/∂N]v(r) and η≡[∂2E/∂N2]v(r). Thus, the ε param-
eter simply stands for ε≡[∂E/∂μ]v(r), and represents indeed a
number of electrons [11]. Based on the original derivation of
the electrophilicity index [7–10], the quantity ε corresponds to
the negative of the maximum amount of electronic chargeΔN
transferred toward an electrophile immersed in an electron sea
(i.e., an electron bath with chemical potential and molecular
hardness equal to zero). Due to this maximum charge transfer
the electrophile will become energetically stabilized by an
amount equal to –ω [7].
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It should also be pointed out, as explicitly stated by
Gázquez, Cedillo, and Vela (GCV) [12], that the chemical
responses (both global and local) of a given system to charge
donation or charge acceptance are intrinsically different.
Therefore, by considering a chemical system immersed in an
environment that may either accept or donate electronic
charge, GCV have successfully defined the so called
electrodonating and electroaccepting power [12], i.e.,
ω∓≡(μ∓)2/2η∓. Here, the minus superscript is associated to
the intrinsic response of the system when transferring charge
to the electron bath, and the plus superscript is related to the
system’s response when withdrawing charge from the sur-
rounding bath. The original derivation of ω can be recovered
by assuming that μ∓ and η∓ indexes are simply μ and η, mak-
ing no distinction between the reactive proclivities to charge
acceptance/donation processes [7, 12].Within this context, the
proposed IRI scale [1, 2] would have limited applicability to
nucleophilic reactivity.

Following GCV [7, 12], when a chemical system is
surrounded by an electron bath with chemical potential μbath,
the changes in its grand potential are ΔΩ∓≡ΔE∓−μbathΔN∓.
The constrained minimization of this grand potential with re-
spect to ΔN∓ yields the optimum amount of charge trans-
ferred, (ΔN∓)*=−(μ∓−μbath)/η∓ [13, 14]. Since the molecular
hardness η∓ is always positive [15–19] the direction of charge
flow will be naturally driven by the chemical potential of the
bath. Specifically, in the case of μ−>μbathwe have (ΔN−)*<0
and the system is donating charge to the environment, whereas
if μ+<μbath we get (ΔN+)*>0 and the system is accepting
charge from the environment.

Now, let us evaluate the change in the electronic energy of
the system when the optimal amount of charge, (ΔN∓)*, has

been transferred, ΔE∓ ΔN∓ð Þð *Þ ¼ − 1
2η∓ μ∓ð Þ2− μbathð Þ2

h i
.

Thus, within the validity of the imposed constraints, whether
or not the chemical system is gaining stability in the electron
transfer process, will explicitly depend upon the difference
between the chemical potential of the system and the bath,
(μ∓)2−(μbath)2.

In this context, it is important to understand that the IRI
scale recently proposed by Kiyooka and co-workers [1, 2] is
intrinsically referring (and therefore limited) to chemical re-
sponses of a given system immersed in an electron bath with
μbath=0. Under such considerations and within the context of
the simplest approximations to the global reactivity responses
(i.e., finite differences and frontier molecular orbital energies),
any system with negative chemical potential values corre-
spond to electrophiles while only chemical systems with
positive chemical potential (and only those systems) can be
categorized as nucleophiles because they will indeed become
more stable when undergoing charge donation,ΔE−<0! Thus,
owing these constrains the IRI scale would have limited ap-
plicability to predict nucleophilicity. For instance, the model

fails when trying to determine electrophilic and nucleophilic
reactivity of singlet carbenes, as evidenced by Moss and co-
workers [20].

Finally, we would like to emphasize that within the current
framework of rationalizing electronic aspects of electrophilic-
ity and nucleophilicity responses [21–25], the correct choice
of the chemical potential value for the electronic bath would
further widen the scope of applicability. As has been recently
shown [26], the explicit incorporation of the chemical poten-
tial (and hardness) of the reactive partner to simulate the sur-
rounding environment of a given chemical species, provides a
useful way to properly categorize the relative electrophilicity/
nucleophilicity responses when building theoretical electronic
analogues of the well-known experimental scales of Mayr and
coworkers [27–30].

Conclusions

The analysis presented above clearly shows that, for general
applications, the definition of a suitable chemical potential for
the surrounding bath becomes the key consideration to estab-
lish a general reactivity scale. We certainly hope that the ideas
discussed here will contribute to further advance the theoret-
ical schemes [13, 14, 31, 32] that aim to explain the experi-
mental electrophilicity and (particularly) nucleophilicity reac-
tivity scales [27–30, 33].
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